Курсе Data Scientist (Machine Learning). Курс постоянно переименовывается (еще раньше он назывался Разработчик Big Data), видимо, чтоб нивелировать негативные отзывы.
Порог входа на курс занижен. Некоторые темы, подразумевают гораздо более серьезную подготовку, нежели заявленные базовые знания высшей математики. Большая часть материала для самостоятельного изучения предлагается на английском, но никто не указывает требование к знанию этого языка, как пререквизит курса.
В раздаточных материалах курса множество ошибок в математических выкладках, а также устаревший код, скопированный с различных ресурсов. Видимо авториские курсы, как они позиционируются на сайте, подразумевают авторскую компиляцию внешних источников, а не их авторское прочтение.
Попытки задавать вопросы преподавателям в конечном итоге приводят в никуда, по ходу проще самому разобраться, нежели просить разъяснений, поскольку, не разобравшись, они на одну ошибку могу с легкостью налепить другую.
Преподаватели к занятиям не готовятся "от слова совсем". То есть видно как они по ходу читают текст и пытаются пересказать его своими словами. Отсюда и изрядная доля эканья и меканьня, которая в общей сложности отжирает минут 10 от лекции.
Есть там один преподаватель — очередной практик из Германии, так он вообще говорить по-русски нормально не может, у него половина слов английские, поданные в русском прочтении. Плюс к этому мекает постоянно и повторяет одно и то же по нескольку раз меняя местами слова (или заменяя на синонимы). Повторение — это, безусловно, мать учения, но лучше однократно дать интуитивное понимание материала, а не повторять на разные лады, только что прочненный на слайде текст.
Мораль:
1) большая часть "объяснений" — это зачитывание формул, то есть никакого интуитивного понимания не дается. Роль преподавателя мало чем отличается от роли чтеца корявого раздаточного материала. Преподаватель к занятиям не готовится. И еще практический бэкграунд не делает практиков преподавателями. ПрепоДАВАТЕЛЬ — это тот кте умеет давать знания, а не тот, кто умеет хорошо применять их на практике.
2) цена завышена, те же знания можно получить за меньшие деньги из книг и оффлайн курсов на том же udemy или edx.
Антон Лоскутов
Специализация:
Аналитика, Машинное обучение, Математический анализ, Аналитика данных, Data Science
Компания: OTUS (Отус)
3 курсов
средняя стоимость курсов: 68 467 руб
рейтинг: Язык:
О преподавателе
О преподавателе
Работает на позиции Data Scientist в Mail.Ru Group. Окончил образовательный проект «Техносфера» от Mail.Ru. Сейчас заканчивает обучение в МГУ имени М. В. Ломоносова на механико-математическом факультете.
Читал лекции по машинному обучению в проекте Open Data Science, сейчас проводит авторский курс по машинному обучению внутри Mail.Ru. Считает, что машинное обучение — это не только fit-predict, но и математическое понимание происходящего.
Data Scientist в Mail.Ru Group
Какие курсы ведёт
Отзывы
Курс с участием «Антон Лоскутов»
Курсе Data Scientist (Machine Learning). Курс постоянно...
Проверенный
Дмитрий
Курс «Антон Лоскутов»
Курсе Data Scientist (Machine Learning). Курс постоянно...
Проверенный
Дата отзыва 14.08.2019
Дата окончания курса 2019
Курс с участием «Антон Лоскутов»
Курс «Математика для Data Science. Базовый курс»
Проверенный
victor-kalinin
Курс «Антон Лоскутов»
Курс «Математика для Data Science. Базовый курс»
Проверенный
Я, обычное, редко пишу отзывы, но почитав некоторые, все-таки решил зарегистрироваться и написать свою историю с этой компанией.
Кто-то пишет в отзывах, что отводится очень мало времени на уроки, отсутствуют практические примеры на лекциях, высокая стоимость обучения. Друзья, 1.5-2 часа длительность одного занятия (а их два в неделю) и целая неделя, чтобы сделать "домашку" это разве мало? А если вам преподаватель просто будет показывать, как сделать что-то или как решать типовые задачки, не объясняя глубины вопроса и не давая теории, то даю гарантию - вы станете очередным типовым копипастером без понимания как всё работает. Или вот про высокую стоимость - ради интереса зайдите на биржу и посмотрите сколько стоят услуги репетитора по высшей математике :).
Прежде чем брать курс вы должны понимать, что учеба — это в первую очередь огромный труд (который в итоге потом будет неплохо оплачиваться), а также долгий процесс и еще надо делать ДЗ :) И не забываем про о реальность бытия - дом, семью, работу, лень... А то многие думают: «Я сейчас оплачу курс, отучусь и у меня будет большая зарплата, дом и мотоцикл». Наверное рассчитывают, что знания сами закачаются в голову как программа (хотя я сам был бы не против такой технологии :) )
А теперь моя небольшая история. Последние несколько лет я все чаще стал сталкиваться с задачами, которые попадают в современную область Data Science. Несколько раз пытался начать обучение в данном направлении (даже брал курсы на Coursera, но так ни одного и не закончил) и, сталкиваясь с первыми сложностями в обучении, всегда успокаивал себя, что и всё это какая-то магия и объект поклонения настоящих математиков в очках с толстыми стеклами, которые свитеры в брюки заправляют, а моя участь – всю оставшуюся профессиональную жизнь автоматизировать бизнес-процессы с помощью 1С (возможно это и неплохо, но не моё). Но, делая очередной «подход к снаряду», я понял, что пропустил первый и самый важный шаг – необходимость восстановить свой математический аппарат, который уже «давно заплесневел и мхом покрылся со времен института». Проанализировав рынок обучения, остановился на компании OTUS и курсе «Математика для Data Science. Базовый курс», т. к. привлекла сильная команда преподавателей, хорошая программа обучения и онлайн-формат.
В процессе обучения ожидания подтвердились: преподаватели понятно объясняют материал, а через Slack всегда можно уточнить нюансы или попросить объяснить моменты, которые остались непонятными. Также сам формат онлайн занятий тоже оказался удобным – всегда есть записи занятий, которые можно пересмотреть в любое время.
А теперь немного критики. OTUS - компания молодая, поэтому иногда, совсем редко, в лекциях встречаются небольшие технические недочеты, а некоторые преподаватели могут использовать академическую подачу материала, что не вписывается в общую концепцию компании, но кураторы OTUS тщательно отслеживают такие моменты и быстро принимают правильные управленческие решения.
Но самое главное, что я получил от курса не только знания, но и возможность опять начать учиться и это очень здорово. Это ни с чем не сравнимое чувство студенческой романтики. Появилось огромное желание писать код, решать сложные задачи, изучать новые и перспективные технологии. Понимать, что сделал первый шаг, чтобы стать востребованным специалистом в одной из самых популярных областей.
Закончив курс «Математика для Data Science. Базовый курс», я сразу же записался на трек по Data Science, состоящий из курсов «Machine learning» и «Нейронные сети на Python» и в настоящий момент успешно учусь уже два месяца.
Кто-то пишет в отзывах, что отводится очень мало времени на уроки, отсутствуют практические примеры на лекциях, высокая стоимость обучения. Друзья, 1.5-2 часа длительность одного занятия (а их два в неделю) и целая неделя, чтобы сделать "домашку" это разве мало? А если вам преподаватель просто будет показывать, как сделать что-то или как решать типовые задачки, не объясняя глубины вопроса и не давая теории, то даю гарантию - вы станете очередным типовым копипастером без понимания как всё работает. Или вот про высокую стоимость - ради интереса зайдите на биржу и посмотрите сколько стоят услуги репетитора по высшей математике :).
Прежде чем брать курс вы должны понимать, что учеба — это в первую очередь огромный труд (который в итоге потом будет неплохо оплачиваться), а также долгий процесс и еще надо делать ДЗ :) И не забываем про о реальность бытия - дом, семью, работу, лень... А то многие думают: «Я сейчас оплачу курс, отучусь и у меня будет большая зарплата, дом и мотоцикл». Наверное рассчитывают, что знания сами закачаются в голову как программа (хотя я сам был бы не против такой технологии :) )
А теперь моя небольшая история. Последние несколько лет я все чаще стал сталкиваться с задачами, которые попадают в современную область Data Science. Несколько раз пытался начать обучение в данном направлении (даже брал курсы на Coursera, но так ни одного и не закончил) и, сталкиваясь с первыми сложностями в обучении, всегда успокаивал себя, что и всё это какая-то магия и объект поклонения настоящих математиков в очках с толстыми стеклами, которые свитеры в брюки заправляют, а моя участь – всю оставшуюся профессиональную жизнь автоматизировать бизнес-процессы с помощью 1С (возможно это и неплохо, но не моё). Но, делая очередной «подход к снаряду», я понял, что пропустил первый и самый важный шаг – необходимость восстановить свой математический аппарат, который уже «давно заплесневел и мхом покрылся со времен института». Проанализировав рынок обучения, остановился на компании OTUS и курсе «Математика для Data Science. Базовый курс», т. к. привлекла сильная команда преподавателей, хорошая программа обучения и онлайн-формат.
В процессе обучения ожидания подтвердились: преподаватели понятно объясняют материал, а через Slack всегда можно уточнить нюансы или попросить объяснить моменты, которые остались непонятными. Также сам формат онлайн занятий тоже оказался удобным – всегда есть записи занятий, которые можно пересмотреть в любое время.
А теперь немного критики. OTUS - компания молодая, поэтому иногда, совсем редко, в лекциях встречаются небольшие технические недочеты, а некоторые преподаватели могут использовать академическую подачу материала, что не вписывается в общую концепцию компании, но кураторы OTUS тщательно отслеживают такие моменты и быстро принимают правильные управленческие решения.
Но самое главное, что я получил от курса не только знания, но и возможность опять начать учиться и это очень здорово. Это ни с чем не сравнимое чувство студенческой романтики. Появилось огромное желание писать код, решать сложные задачи, изучать новые и перспективные технологии. Понимать, что сделал первый шаг, чтобы стать востребованным специалистом в одной из самых популярных областей.
Закончив курс «Математика для Data Science. Базовый курс», я сразу же записался на трек по Data Science, состоящий из курсов «Machine learning» и «Нейронные сети на Python» и в настоящий момент успешно учусь уже два месяца.
Дата отзыва 06.05.2020
Дата окончания курса 2020
Курс с участием «Антон Лоскутов»
Курс «Математика для Data Science. Базовый курс»
Проверенный
victor-kalinin
Курс «Антон Лоскутов»
Курс «Математика для Data Science. Базовый курс»
Проверенный
ДОСТОИНСТВА:
Возможность прояснять вопросы через Slack в любое время, есть записи занятий, которые можно пересмотреть в любое время
НЕДОСТАТКИ:
встречаются небольшие технические недочеты, а некоторые преподаватели могут использовать академическую подачу материала
Я, обычное, редко пишу отзывы, но почитав некоторые, все-таки решил зарегистрироваться и написать свою историю с этой компанией.
Кто-то пишет в отзывах, что отводится очень мало времени на уроки, отсутствуют практические примеры на лекциях, высокая стоимость обучения. Друзья, 1.5-2 часа длительность одного занятия (а их два в неделю) и целая неделя, чтобы сделать домашку это разве мало? А если вам преподаватель просто будет показывать, как сделать что-то или как решать типовые задачки, не объясняя глубины вопроса и не давая теории, то даю гарантию - вы станете очередным типовым копипастером без понимания как всё работает. Или вот про высокую стоимость - ради интереса зайдите на биржу и посмотрите сколько стоят услуги репетитора по высшей математике :).
Прежде чем брать курс вы должны понимать, что учеба — это в первую очередь огромный труд (который в итоге потом будет неплохо оплачиваться), а также долгий процесс и еще надо делать ДЗ :) И не забываем про о реальность бытия - дом, семью, работу, лень... А то многие думают: «Я сейчас оплачу курс, отучусь и у меня будет большая зарплата, дом и мотоцикл». Наверное рассчитывают, что знания сами закачаются в голову как программа (хотя я сам был бы не против такой технологии :) )
А теперь моя небольшая история. Последние несколько лет я все чаще стал сталкиваться с задачами, которые попадают в современную область Data Science. Несколько раз пытался начать обучение в данном направлении (даже брал курсы на Coursera, но так ни одного и не закончил) и, сталкиваясь с первыми сложностями в обучении, всегда успокаивал себя, что и всё это какая-то магия и объект поклонения настоящих математиков в очках с толстыми стеклами, которые свитеры в брюки заправляют, а моя участь – всю оставшуюся профессиональную жизнь автоматизировать бизнес-процессы с помощью 1С (возможно это и неплохо, но не моё). Но, делая очередной «подход к снаряду», я понял, что пропустил первый и самый важный шаг – необходимость восстановить свой математический аппарат, который уже «давно заплесневел и мхом покрылся со времен института». Проанализировав рынок обучения, остановился на компании OTUS и курсе «Математика для Data Science. Базовый курс», т. к. привлекла сильная команда преподавателей, хорошая программа обучения и онлайн-формат.
В процессе обучения ожидания подтвердились: преподаватели понятно объясняют материал, а через Slack всегда можно уточнить нюансы или попросить объяснить моменты, которые остались непонятными. Также сам формат онлайн занятий тоже оказался удобным – всегда есть записи занятий, которые можно пересмотреть в любое время.
А теперь немного критики. OTUS - компания молодая, поэтому иногда, совсем редко, в лекциях встречаются небольшие технические недочеты, а некоторые преподаватели могут использовать академическую подачу материала, что не вписывается в общую концепцию компании, но кураторы OTUS тщательно отслеживают такие моменты и быстро принимают правильные управленческие решения.
Но самое главное, что я получил от курса не только знания, но и возможность опять начать учиться и это очень здорово. Это ни с чем не сравнимое чувство студенческой романтики. Появилось огромное желание писать код, решать сложные задачи, изучать новые и перспективные технологии. Понимать, что сделал первый шаг, чтобы стать востребованным специалистом в одной из самых популярных областей.
Закончив курс «Математика для Data Science. Базовый курс», я сразу же записался на трек по Data Science, состоящий из курсов «Machine learning» и «Нейронные сети на Python» и в настоящий момент успешно учусь уже два месяца.
Возможность прояснять вопросы через Slack в любое время, есть записи занятий, которые можно пересмотреть в любое время
НЕДОСТАТКИ:
встречаются небольшие технические недочеты, а некоторые преподаватели могут использовать академическую подачу материала
Я, обычное, редко пишу отзывы, но почитав некоторые, все-таки решил зарегистрироваться и написать свою историю с этой компанией.
Кто-то пишет в отзывах, что отводится очень мало времени на уроки, отсутствуют практические примеры на лекциях, высокая стоимость обучения. Друзья, 1.5-2 часа длительность одного занятия (а их два в неделю) и целая неделя, чтобы сделать домашку это разве мало? А если вам преподаватель просто будет показывать, как сделать что-то или как решать типовые задачки, не объясняя глубины вопроса и не давая теории, то даю гарантию - вы станете очередным типовым копипастером без понимания как всё работает. Или вот про высокую стоимость - ради интереса зайдите на биржу и посмотрите сколько стоят услуги репетитора по высшей математике :).
Прежде чем брать курс вы должны понимать, что учеба — это в первую очередь огромный труд (который в итоге потом будет неплохо оплачиваться), а также долгий процесс и еще надо делать ДЗ :) И не забываем про о реальность бытия - дом, семью, работу, лень... А то многие думают: «Я сейчас оплачу курс, отучусь и у меня будет большая зарплата, дом и мотоцикл». Наверное рассчитывают, что знания сами закачаются в голову как программа (хотя я сам был бы не против такой технологии :) )
А теперь моя небольшая история. Последние несколько лет я все чаще стал сталкиваться с задачами, которые попадают в современную область Data Science. Несколько раз пытался начать обучение в данном направлении (даже брал курсы на Coursera, но так ни одного и не закончил) и, сталкиваясь с первыми сложностями в обучении, всегда успокаивал себя, что и всё это какая-то магия и объект поклонения настоящих математиков в очках с толстыми стеклами, которые свитеры в брюки заправляют, а моя участь – всю оставшуюся профессиональную жизнь автоматизировать бизнес-процессы с помощью 1С (возможно это и неплохо, но не моё). Но, делая очередной «подход к снаряду», я понял, что пропустил первый и самый важный шаг – необходимость восстановить свой математический аппарат, который уже «давно заплесневел и мхом покрылся со времен института». Проанализировав рынок обучения, остановился на компании OTUS и курсе «Математика для Data Science. Базовый курс», т. к. привлекла сильная команда преподавателей, хорошая программа обучения и онлайн-формат.
В процессе обучения ожидания подтвердились: преподаватели понятно объясняют материал, а через Slack всегда можно уточнить нюансы или попросить объяснить моменты, которые остались непонятными. Также сам формат онлайн занятий тоже оказался удобным – всегда есть записи занятий, которые можно пересмотреть в любое время.
А теперь немного критики. OTUS - компания молодая, поэтому иногда, совсем редко, в лекциях встречаются небольшие технические недочеты, а некоторые преподаватели могут использовать академическую подачу материала, что не вписывается в общую концепцию компании, но кураторы OTUS тщательно отслеживают такие моменты и быстро принимают правильные управленческие решения.
Но самое главное, что я получил от курса не только знания, но и возможность опять начать учиться и это очень здорово. Это ни с чем не сравнимое чувство студенческой романтики. Появилось огромное желание писать код, решать сложные задачи, изучать новые и перспективные технологии. Понимать, что сделал первый шаг, чтобы стать востребованным специалистом в одной из самых популярных областей.
Закончив курс «Математика для Data Science. Базовый курс», я сразу же записался на трек по Data Science, состоящий из курсов «Machine learning» и «Нейронные сети на Python» и в настоящий момент успешно учусь уже два месяца.
Дата отзыва 06.05.2020
Дата окончания курса 2020
Курс с участием «Антон Лоскутов»
Курс показался полезным для меня
Проверенный
vrusakevich
Курс «Антон Лоскутов»
Курс показался полезным для меня
Проверенный
ДОСТОИНСТВА:
Много практики, минимум теории. Изучили полезные темы по парсингу сайтов и pipeline.
НЕДОСТАТКИ:
Присутствуют темы, которые не очень зашли, например - Vowpal Wabbit. Без базовых знаний машинного обучения будет сложно. Многовато домашних заданий. В некоторых темах очень быстро пробегаются по коду, что не позволяет разобраться в нем.
Курс интересный, много практики. Хотя по ощущениям многовато домашних заданий, не успеваешь сконцентрироваться, тщательней обдумать выполнение заданий и заодно осмыслить теорию, почитать что-то сверх материала. Может быть имело бы смысл их уменьшить штук до 13-15. По мне идеально одно задание на неделю в среднем.
Полезно, что проходили темы не на прямую связанные с машинным обучением, например - pipeline, парсинг.
Нравится подача материала Дмитрием Сергеевым тем, что темы начинает объяснять с простого на пальцах, постепенно увеличивая сложность.
Также очень хорошо, что Дмитрий Музалевский даёт обратную связь при проверке дз, подсказывает где можно что-то еще улучшить в будущем, задает направление. Ну либо подчеркивает, что сделано отлично)
Может быть ещё бы добавил при прохождении каких-либо алгоритмов на занятиях объяснение где в каких моделях стоит на какие параметры обращать больше внимания, а на какие нет в конкретных часто используемых библиотеках. Что требует настройки, а что нет. Понятно, что в документации всё есть, но она не всегда понятна обычному не опытному человеку. Потому как в итоге работать придется с этими библиотеками, поэтому подробности не помешали бы.
Было бы круто сделать интергацию резюме с hh или каким-нибудь моим кругом, поскольку очень не охото копи-пастить оттуда резюме, и при внесении изменений в hh, оно бы поменялось и у вас.
Ну и надеюсь, что ваш сервис поможет найти работу связанную с машинным обучением)
Много практики, минимум теории. Изучили полезные темы по парсингу сайтов и pipeline.
НЕДОСТАТКИ:
Присутствуют темы, которые не очень зашли, например - Vowpal Wabbit. Без базовых знаний машинного обучения будет сложно. Многовато домашних заданий. В некоторых темах очень быстро пробегаются по коду, что не позволяет разобраться в нем.
Курс интересный, много практики. Хотя по ощущениям многовато домашних заданий, не успеваешь сконцентрироваться, тщательней обдумать выполнение заданий и заодно осмыслить теорию, почитать что-то сверх материала. Может быть имело бы смысл их уменьшить штук до 13-15. По мне идеально одно задание на неделю в среднем.
Полезно, что проходили темы не на прямую связанные с машинным обучением, например - pipeline, парсинг.
Нравится подача материала Дмитрием Сергеевым тем, что темы начинает объяснять с простого на пальцах, постепенно увеличивая сложность.
Также очень хорошо, что Дмитрий Музалевский даёт обратную связь при проверке дз, подсказывает где можно что-то еще улучшить в будущем, задает направление. Ну либо подчеркивает, что сделано отлично)
Может быть ещё бы добавил при прохождении каких-либо алгоритмов на занятиях объяснение где в каких моделях стоит на какие параметры обращать больше внимания, а на какие нет в конкретных часто используемых библиотеках. Что требует настройки, а что нет. Понятно, что в документации всё есть, но она не всегда понятна обычному не опытному человеку. Потому как в итоге работать придется с этими библиотеками, поэтому подробности не помешали бы.
Было бы круто сделать интергацию резюме с hh или каким-нибудь моим кругом, поскольку очень не охото копи-пастить оттуда резюме, и при внесении изменений в hh, оно бы поменялось и у вас.
Ну и надеюсь, что ваш сервис поможет найти работу связанную с машинным обучением)
Дата отзыва 05.05.2020
Дата окончания курса 2020